Ebola: Symptoms, treatment, and causes




lissencephaly :: Article Creator

A Rough Guide To A Smooth Brain

Dobyns, W. B., Reiner, O., Carrozzo, R. & Ledbetter, D. H. J. Am. Med. Assoc. 270, 2838–2842 ( 1993).

Article  CAS  Google Scholar 

Faulkner, N. E. Et al. Nature Cell Biol. 2, 784– 791 (2000).

Article  CAS  Google Scholar 

Liu, Z., Stewart, R. & Luo, L. Nature Cell Biology 2, 776– 783 (2000).

Article  CAS  Google Scholar 

Smith, D. S. Et al. Nature Cell Biol. 2, 767– 775 (2000).

Article  CAS  Google Scholar 

Reiner, O. Et al. Nature 364, 717–721 (1993).

Article  CAS  Google Scholar 

Hattori, M., Adachi, H., Tsujimoto, M., Arai, H. & Inoue, K. Nature 370, 216–218 (1994) (corrected Nature 370, 391; 1994).

Article  CAS  Google Scholar 

Xiang, X., Osmani, A. H., Osmani, S. A., Xin, M. & Morris, N. R. Mol. Biol. Cell 6, 297–310 (1995).

Article  CAS  Google Scholar 

Morris, N. R., Efimov, V. P. & Xiang, X. Trends Cell Biol. 8, 467– 470 (1998).

Article  CAS  Google Scholar 

Swan, A. N., Nguyen, T. & Suter, B. Nature Cell Biol. 1, 444– 449 (1999).

Article  CAS  Google Scholar 

Sapir, T., Elbaum, M. & Reiner, O. EMBO J. 16, 6977– 6984 (1997).

Article  CAS  Google Scholar 

Holzbaur, E. L. & Vallee, R. B. Annu. Rev. Cell Biol. 10, 339–372 ( 1994).

Article  CAS  Google Scholar 

McConnell, S.K. Science 254, 282–285 ( 1991).

Article  CAS  Google Scholar 

Liu, Z., Xie, T. & Steward, R. Development 126, 4477– 4488 (1999).

CAS  PubMed  Google Scholar 

Hirotsune, S. Et al. Nature Genet. 19, 333– 339 (1998).

Article  CAS  Google Scholar 

Bix, G. J. & Clark, G. D. J. Neurosci. 18, 307–318 (1998).

Article  CAS  Google Scholar 

McNeil, R. S., Swann, J. W., Brinkley, B. R. & Clark, G. D. Cell Motil. Cytoskeleton 43, 99–113 (1999).

Article  CAS  Google Scholar 

Vallee, R. B. Et al. Biochim. Biophys. Acta 1496, 89– 98 (2000).

Article  CAS  Google Scholar 

Karki, S. & Holzbaur, E. L. Curr. Opin. Cell Biol. 11, 45–°53 (1999).

Article  CAS  Google Scholar 


Regulators Of The Cytoplasmic Dynein Motor

Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

CAS  PubMed  Google Scholar 

Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

CAS  PubMed  Google Scholar 

Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

CAS  PubMed  Google Scholar 

Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131, 1507–1516 (1995).

CAS  PubMed  Google Scholar 

Karki, S. & Holzbaur, E. L. Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem. 270, 28806–28811 (1995).

CAS  PubMed  Google Scholar 

Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

CAS  PubMed  Google Scholar 

Purohit, A., Tynan, S. H., Vallee, R. & Doxsey, S. J. Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J. Cell Biol. 147, 481–492 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Farkasovsky, M. & Kuntzel, H. Cortical Num1p interacts with the dynein intermediate chain Pac11p and cytoplasmic microtubules in budding yeast. J. Cell Biol. 152, 251–262 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Ha, J. Et al. A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes. J. Cell Biol. 181, 1027–1039 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

Mallik, R., Carter, B. C., Lex, S. A., King, S. J. & Gross, S. P. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004).

CAS  PubMed  Google Scholar 

Reck-Peterson, S. L. Et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006). Using recombinant dynein from S. Cerevisiae , the authors directly observe the motion of single molecules of dynein for the first time, showing that it is a processive motor that requires dimerization for processivity. Their data strongly suggest that alternating steps of the dynein heads drive motility.

CAS  PubMed  PubMed Central  Google Scholar 

Gennerich, A. & Vale, R. D. Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Nan, X., Sims, P. A. & Xie, X. S. Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chemphyschem 9, 707–712 (2008).

CAS  PubMed  Google Scholar 

Sims, P. A. & Xie, X. S. Probing dynein and kinesin stepping with mechanical manipulation in a living cell. Chemphyschem 13, 1511–1516 (2009).

Google Scholar 

Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Ross, J. L., Shuman, H., Holzbaur, E. L. & Goldman, Y. E. Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys. J. 94, 3115–3125 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Toba, S., Watanabe, T. M., Yamaguchi-Okimoto, L., Toyoshima, Y. Y. & Higuchi, H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl Acad. Sci. USA 103, 5741–5745 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Welte, M. A., Gross, S. P., Postner, M., Block, S. M. & Wieschaus, E. F. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92, 547–557 (1998). The authors observe the motility and force generation of dynein- and kinesin-transported lipid droplets in living D. Melanogaster embryos. Their data suggest that dynein and kinesin activities are coupled and that the protein Klarsicht might be involved in this coupling.

CAS  PubMed  Google Scholar 

Laib, J. A., Marin, J. A., Bloodgood, R. A. & Guilford, W. H. The reciprocal coordination and mechanics of molecular motors in living cells. Proc. Natl Acad. Sci. USA 106, 3190–3195 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Ross, J. L., Ali, M. Y. & Warshaw, D. M. Cargo transport: molecular motors navigate a complex cytoskeleton. Curr. Opin. Cell Biol. 20, 41–47 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Gill, S. R. Et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115, 1639–1650 (1991).

CAS  PubMed  Google Scholar 

Schroer, T. A. & Sheetz, M. P. Two activators of microtubule-based vesicle transport. J. Cell Biol. 115, 1309–1318 (1991).

CAS  PubMed  Google Scholar 

Schroer, T. A. Dynactin. Annu. Rev. Cell. Dev. Biol. 20, 759–779 (2004).

CAS  PubMed  Google Scholar 

Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863–874 (2000).

CAS  PubMed  PubMed Central  Google Scholar 

Lee, W. L., Kaiser, M. A. & Cooper, J. A. The offloading model for dynein function: differential function of motor subunits. J. Cell Biol. 168, 201–207 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Lee, W. L., Oberle, J. R. & Cooper, J. A. The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J. Cell Biol. 160, 355–364 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Sheeman, B. Et al. Determinants of S. Cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13, 364–372 (2003).

CAS  PubMed  Google Scholar 

Kardon, J. R., Reck-Peterson, S. L. & Vale, R. D. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. Proc. Natl Acad. Sci. USA 106, 5669–5674 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Xiang, X., Beckwith, S. M. & Morris, N. R. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 91, 2100–2104 (1994).

CAS  PubMed  PubMed Central  Google Scholar 

Xiang, X., Zuo, W., Efimov, V. P. & Morris, N. R. Isolation of a new set of Aspergillus nidulans mutants defective in nuclear migration. Curr. Genet. 35, 626–630 (1999).

CAS  PubMed  Google Scholar 

Fischer, R. & Timberlake, W. E. Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein required for nuclear positioning and completion of asexual development. J. Cell Biol. 128, 485–498 (1995).

CAS  PubMed  Google Scholar 

Xiang, X., Han, G., Winkelmann, D. A., Zuo, W. & Morris, N. R. Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr. Biol. 10, 603–606 (2000).

CAS  PubMed  Google Scholar 

Zhang, J., Li, S., Fischer, R. & Xiang, X. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol. Biol. Cell 14, 1479–1488 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Hayashi, I., Wilde, A., Mal, T. K. & Ikura, M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol. Cell 19, 449–460 (2005).

CAS  PubMed  Google Scholar 

Honnappa, S. Et al. Key interaction modes of dynamic +TIP networks. Mol. Cell 23, 663–671 (2006).

CAS  PubMed  Google Scholar 

Weisbrich, A. Et al. Structure-function relationship of CAP-Gly domains. Nature Struct. Mol. Biol. 14, 959–967 (2007).

CAS  Google Scholar 

Hayashi, I., Plevin, M. J. & Ikura, M. CLIP170 autoinhibition mimics intermolecular interactions with p150Glued or EB1. Nature Struct. Mol. Biol. 14, 980–981 (2007). References 36–39 use structural and biochemical methods to define the interactions between CAP-Gly domains and both the zinc knuckle motif found in CLIP170 and the acidic C-terminal motif found in CLIP170, EB1 and α-tubulin. Competition and cooperation between these moderate affinity interactions are probably important to microtubule plus end tracking and its regulation.

CAS  Google Scholar 

Valetti, C. Et al. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell 10, 4107–4120 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Lansbergen, G. Et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J. Cell Biol. 166, 1003–1014 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Vaughan, P. S., Miura, P., Henderson, M., Byrne, B. & Vaughan, K. T. A role for regulated binding of p150Glued to microtubule plus ends in organelle transport. J. Cell Biol. 158, 305–319 (2002).

CAS  PubMed  PubMed Central  Google Scholar 

Watson, P., Forster, R., Palmer, K. J., Pepperkok, R. & Stephens, D. J. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nature Cell Biol. 7, 48–55 (2005).

CAS  PubMed  Google Scholar 

Puls, I. Et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003).

CAS  PubMed  Google Scholar 

Lai, C. Et al. The G59S mutation in p150glued causes dysfunction of dynactin in mice. J. Neurosci. 27, 13982–13990 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Levy, J. R. Et al. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J. Cell Biol. 172, 733–745 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Chevalier-Larsen, E. S., Wallace, K. E., Pennise, C. R. & Holzbaur, E. L. Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin. Hum. Mol. Genet. 17, 1946–1955 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Tokito, M. K., Howland, D. S., Lee, V. M. & Holzbaur, E. L. Functionally distinct isoforms of dynactin are expressed in human neurons. Mol. Biol. Cell 7, 1167–1180 (1996).

CAS  PubMed  PubMed Central  Google Scholar 

Kim, H. Et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J. Cell Biol. 176, 641–651 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Dixit, R., Levy, J. R., Tokito, M., Ligon, L. A. & Holzbaur, E. L. Regulation of dynactin through the differential expression of p150Glued isoforms. J. Biol. Chem. 283, 33611–33619 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Lomakin, A. J. Et al. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. Dev. Cell 17, 323–333 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Holleran, E. A. Et al. βIII spectrin binds to the Arp1 subunit of dynactin. J. Biol. Chem. 276, 36598–36605 (2001).

CAS  PubMed  Google Scholar 

Muresan, V. Et al. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell 7, 173–183 (2001).

CAS  PubMed  Google Scholar 

De Matteis, M. A. & Morrow, J. S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113, 2331–2343 (2000).

CAS  PubMed  Google Scholar 

Johansson, M. Et al. Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor βlll spectrin. J. Cell Biol. 176, 459–471 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Rocha, N. Et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009). Through its conformational change in response to the cholesterol content of the membrane, ORPL1 regulates the association of dynein and dynactin with late endosomes and thus regulates their transport in response to cellular conditions.

CAS  PubMed  PubMed Central  Google Scholar 

Kumar, S., Zhou, Y. & Plamann, M. Dynactin-membrane interaction is regulated by the C-terminal domains of p150Glued. EMBO Rep. 2, 939–944 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Lee, I. H., Kumar, S. & Plamann, M. Null mutants of the neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Mol. Biol. Cell 12, 2195–2206 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Blangy, A., Arnaud, L. & Nigg, E. A. Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150. J. Biol. Chem. 272, 19418–19424 (1997).

CAS  PubMed  Google Scholar 

Deacon, S. W. Et al. Dynactin is required for bidirectional organelle transport. J. Cell Biol. 160, 297–301 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Berezuk, M. A. & Schroer, T. A. Dynactin enhances the processivity of kinesin-2. Traffic 8, 124–129 (2007).

CAS  PubMed  Google Scholar 

Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA 92, 1634–1638 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol. 2, 20–24 (2000).

CAS  PubMed  Google Scholar 

Culver-Hanlon, T. L., Lex, S. A., Stephens, A. D., Quintyne, N. J. & King, S. J. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nature Cell Biol. 8, 264–270 (2006).

CAS  PubMed  Google Scholar 

Moore, J. K., Sept, D. & Cooper, J. A. Neurodegeneration mutations in dynactin impair dynein-dependent nuclear migration. Proc. Natl Acad. Sci. USA 106, 5147–5152 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Dobyns, W. B., Reiner, O., Carrozzo, R. & Ledbetter, D. H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. JAMA 270, 2838–2842 (1993).

CAS  PubMed  Google Scholar 

Vallee, R. B. & Tsai, J. W. The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. Genes Dev. 20, 1384–1393 (2006).

CAS  PubMed  Google Scholar 

Xiang, X., Roghi, C. & Morris, N. R. Characterization and localization of the cytoplasmic dynein heavy chain in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 92, 9890–9894 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

Geiser, J. R. Et al. Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol. Biol. Cell 8, 1035–1050 (1997).

CAS  PubMed  PubMed Central  Google Scholar 

Efimov, V. P. & Morris, N. R. The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J. Cell Biol. 150, 681–688 (2000).

CAS  PubMed  PubMed Central  Google Scholar 

Feng, Y. Et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28, 665–679 (2000).

CAS  PubMed  Google Scholar 

Niethammer, M. Et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

CAS  PubMed  Google Scholar 

Sasaki, S. Et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

CAS  PubMed  Google Scholar 

Smith, D. S. Et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol. 2, 767–775 (2000).

CAS  PubMed  Google Scholar 

Liang, Y. Et al. Nudel functions in membrane traffic mainly through association with Lis1 and cytoplasmic dynein. J. Cell Biol. 164, 557–566 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Swan, A., Nguyen, T. & Suter, B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nature Cell Biol. 1, 444–449 (1999).

CAS  PubMed  Google Scholar 

Han, G. Et al. The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr. Biol. 11, 719–724 (2001).

CAS  PubMed  Google Scholar 

Li, J., Lee, W. L. & Cooper, J. A. NudEL targets dynein to microtubule ends through LIS1. Nature Cell Biol. 7, 686–690 (2005).

CAS  PubMed  Google Scholar 

Carvalho, P., Gupta, M. L. Jr, Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004).

CAS  PubMed  Google Scholar 

Coquelle, F. M. Et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089–3102 (2002).

CAS  PubMed  PubMed Central  Google Scholar 

Efimov, V. P. Roles of NUDE and NUDF proteins of Aspergillus nidulans: insights from intracellular localization and overexpression effects. Mol. Biol. Cell 14, 871–888 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Markus, S. M., Punch, J. J. & Lee, W. L. Motor- and tail-dependent targeting of dynein to microtubule plus ends and the cell cortex. Curr. Biol. 19, 196–205 (2009). This study in S. Cerevisiae shows that, unlike full length dynein, LIS1-mediated microtubule plus end targeting of the dynein motor domain does not require NUDEL, suggesting that NUDEL is required only to prime dynein for LIS1 activity.

CAS  PubMed  PubMed Central  Google Scholar 

Feng, Y. & Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44, 279–293 (2004).

CAS  PubMed  Google Scholar 

Shu, T. Et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

CAS  PubMed  Google Scholar 

Siller, K. H. & Doe, C. Q. Lis1/dynactin regulates metaphase spindle orientation in Drosophila neuroblasts. Dev. Biol. 319, 1–9 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Tanaka, T. Et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Tsai, J. W., Chen, Y., Kriegstein, A. R. & Vallee, R. B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Tsai, J. W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature Neurosci. 10, 970–979 (2007). Through observations of migrating neurons in situ , the authors make the surprising observation that the nucleus frequently lags the movement of the centrosome, rather than being tightly coupled as had been thought previously. Dynein and LIS1 contribute to the continuous centrosome movement and to saltatory nuclear movements through separate mechanisms.

CAS  PubMed  Google Scholar 

Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

CAS  PubMed  Google Scholar 

Dujardin, D. L. Et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Shen, Y. Et al. Nudel binds Cdc42GAP to modulate Cdc42 activity at the leading edge of migrating cells. Dev. Cell 14, 342–353 (2008).

CAS  PubMed  Google Scholar 

Faulkner, N. E. Et al. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nature Cell Biol. 2, 784–791 (2000).

CAS  PubMed  Google Scholar 

Cockell, M. M., Baumer, K. & Gonczy, P. Lis-1 is required for dynein-dependent cell division processes in C. Elegans embryos. J. Cell Sci. 117, 4571–4582 (2004).

CAS  PubMed  Google Scholar 

Yang, Z. Et al. Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Mol. Cell. Biol. 25, 4062–4074 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Soukoulis, V. Et al. Cytoplasmic LEK1 is a regulator of microtubule function through its interaction with the LIS1 pathway. Proc. Natl Acad. Sci. USA 102, 8549–8554 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Liang, Y. Et al. Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase. Mol. Biol. Cell 18, 2656–2666 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Vergnolle, M. A. & Taylor, S. S. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr. Biol. 17, 1173–1179 (2007).

CAS  PubMed  Google Scholar 

Mesngon, M. T. Et al. Regulation of cytoplasmic dynein ATPase by Lis1. J. Neurosci. 26, 2132–2139 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Yamada, M. Et al. LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J. 27, 2471–2483 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Mohler, J. & Wieschaus, E. F. Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. Genetics 112, 803–822 (1986).

CAS  PubMed  PubMed Central  Google Scholar 

Steward, R. & Nusslein-Volhard, C. The genetics of the dorsal-Bicaudal-D region of Drosophila melanogaster. Genetics 113, 665–678 (1986).

CAS  PubMed  PubMed Central  Google Scholar 

Bullock, S. L. & Ish-Horowicz, D. Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 414, 611–616 (2001).

CAS  PubMed  Google Scholar 

Delanoue, R. & Davis, I. Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo. Cell 122, 97–106 (2005).

CAS  PubMed  Google Scholar 

Navarro, C., Puthalakath, H., Adams, J. M., Strasser, A. & Lehmann, R. Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate. Nature Cell Biol. 6, 427–435 (2004).

CAS  PubMed  Google Scholar 

Hoogenraad, C. C. Et al. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J. 20, 4041–4054 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Matanis, T. Et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nature Cell Biol. 4, 986–992 (2002).

CAS  PubMed  Google Scholar 

Hoogenraad, C. C. Et al. Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO J. 22, 6004–6015 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Larsen, K. S., Xu, J., Cermelli, S., Shu, Z. & Gross, S. P. BicaudalD actively regulates microtubule motor activity in lipid droplet transport. PLoS One 3, e3763 (2008).

PubMed  PubMed Central  Google Scholar 

Pare, C. & Suter, B. Subcellular localization of Bic-D::GFP is linked to an asymmetric oocyte nucleus. J. Cell Sci. 113, 2119–2127 (2000).

CAS  PubMed  Google Scholar 

Fumoto, K., Hoogenraad, C. C. & Kikuchi, A. GSK-3β-regulated interaction of BICD with dynein is involved in microtubule anchorage at centrosome. EMBO J. 25, 5670–5682 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Oh, J. & Steward, R. Bicaudal-D is essential for egg chamber formation and cytoskeletal organization in drosophila oogenesis. Dev. Biol. 232, 91–104 (2001).

CAS  PubMed  Google Scholar 

Dienstbier, M., Boehl, F., Li, X. & Bullock, S. L. Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev. 23, 1546–1558 (2009). The authors show that the Bicaudal D binding partner Egalitarian directly binds localization signals on mRNA, and they propose a general framework for the contribution of Bicaudal D to dynein cargo binding.

CAS  PubMed  PubMed Central  Google Scholar 

Bullock, S. L., Nicol, A., Gross, S. P. & Zicha, D. Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity. Curr. Biol. 16, 1447–1452 (2006).

CAS  PubMed  Google Scholar 

Griffis, E. R., Stuurman, N. & Vale, R. D. Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J. Cell Biol. 177, 1005–1015 (2007). Spindly is identified as a kinetochore-specific regulator of cytoplasmic dynein.

CAS  PubMed  PubMed Central  Google Scholar 

Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17, 973–980 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Yu, W., Liang, Y. & Zhu, X. Kinetochore dynein generates a poleward pulling force to facilitate congression and full chromosome alignment. Cell Res. 17, 701–712 (2007).

CAS  PubMed  Google Scholar 

Tanaka, T. U. & Desai, A. Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell Biol. 20, 53–63 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Gassmann, R. Et al. A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22, 2385–2399 (2008). The authors characterize the C. Elegans homologue of Spindly and propose a model for how Spindly, RZZ and dynein regulate the maturation of microtubule–kinetochore attachments.

CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto, T. G., Watanabe, S., Essex, A. & Kitagawa, R. SPDL-1 functions as a kinetochore receptor for MDF-1 in Caenorhabditis elegans. J. Cell Biol. 183, 187–194 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Howell, B. J. Et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Wojcik, E. Et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature Cell Biol. 3, 1001–1007 (2001). References 120 and 121 present the initial evidence that dynein transports SAC proteins away from the kinetochore, thus silencing the checkpoint, and that the RZZ complex is involved in this process.

CAS  PubMed  Google Scholar 

Basto, R. Et al. In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Curr. Biol. 14, 56–61 (2004).

CAS  PubMed  Google Scholar 

Chan, Y. W. Et al. Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly. J. Cell Biol. 185, 859–874 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Whyte, J. Et al. Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis. J. Cell Biol. 183, 819–834 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Hirose, H. Et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J. 23, 1267–1278 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Varma, D., Dujardin, D. L., Stehman, S. A. & Vallee, R. B. Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. J. Cell Biol. 172, 655–662 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998).

CAS  PubMed  PubMed Central  Google Scholar 

Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Betzig, E. Et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

CAS  PubMed  Google Scholar 

Shtengel, G. Et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Reck-Peterson, S. L. & Vale, R. D. Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 101, 1491–1495 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y. Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004).

CAS  PubMed  Google Scholar 

Cho, C., Reck-Peterson, S. L. & Vale, R. D. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J. Biol. Chem. 283, 25839–25845 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Gee, M. A., Heuser, J. E. & Vallee, R. B. An extended microtubule-binding struct

Comments

Popular posts from this blog

A Russian lab containing smallpox and Ebola exploded - Vox.com

Azar calls for transparency in Ebola-like death in Tanzania | TheHill - The Hill

Ebola: Symptoms, treatment, and causes